Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Clin Virol Plus ; 1(3): 100038, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-2297483

ABSTRACT

SARS-CoV-2-specific IgM antibodies wane during the first three months after infection and IgG antibody levels decline. This may limit the ability of antibody tests to identify previous SARS-CoV-2 infection at later time points. To examine if the diagnostic sensitivity of antibody tests falls off, we compared the sensitivity of two nucleoprotein-based antibody tests, the Roche Elecsis II Anti-SARS-CoV-2 and the Abbott SARS-CoV-2 IgG assay and three glycoprotein-based tests, the Abbott SARS-CoV-2 IgG II Quant, Siemens Atellica IM COV2T and Euroimmun SARS-CoV-2 assay with 53 sera obtained 6 months after SARS-CoV-2 infection. The sensitivity of the Roche, Abbott SARS-CoV-2 IgG II Quant and Siemens antibody assays was 94.3% (95% confidence interval (CI) 84.3-98.8%), 98.1 % (95% CI: 89.9-100%) and 100 % (95% CI: 93.3-100%). The sensitivity of the N-based Abbott SARS-CoV-2 IgG and the glycoprotein-based Euroimmun ELISA was 45.3 % (95% CI: 31.6-59.6%) and 83.3% (95% CI: 70.2-91.9%). The nucleoprotein-based Roche and the glycoprotein-based Abbott receptor binding domain (RBD) and Siemens tests were more sensitive than the N-based Abbott and the Euroimmun antibody tests (p = 0.0001 to p = 0.039). The N-based Abbott antibody test was less sensitive 6 months than 4-10 weeks after SARS-CoV-2 infection (p = 0.0001). The findings show that most SARS-CoV-2 antibody assays correctly identified previous infection 6 months after infection. The sensitivity of pan-Ig antibody tests was not reduced at 6 months when IgM antibodies have usually disappeared. However, one of the nucleoprotein-based antibody tests significantly lost diagnostic sensitivity over time.

2.
Comput Struct Biotechnol J ; 18: 2100-2106, 2020.
Article in English | MEDLINE | ID: covidwho-2283789

ABSTRACT

ACE2 plays a critical role in SARS-CoV-2 infection to cause COVID-19 and SARS-CoV-2 spike protein binds to ACE2 and probably functionally inhibits ACE2 to aggravate the underlying diseases of COVID-19. The important factors that affect the severity and fatality of COVID-19 include patients' underlying diseases and ages. Therefore, particular care to the patients with underlying diseases is needed during the treatment of COVID-19 patients.

3.
Heliyon ; 9(3): e13952, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2262890

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious and pathogenic virus that first appeared in late December 2019. This SARS-CoV-2 causes an infection of an acute respiratory disease called "coronavirus infectious disease-2019 (COVID-19). The World Health Organization (WHO) declared this SARS-CoV-2 outbreak a great pandemic on March 11, 2020. As of January 31, 2023, SARS-CoV-2 recorded more than 67 million cases and over 6 million deaths. Recently, novel mutated variants of SARS-CoV are also creating a serious health concern worldwide, and the future novel variant is still mysterious. As infection cases of SARS-CoV-2 are increasing daily, scientists are trying to combat the disease using numerous antiviral drugs and vaccines against SARS-CoV-2. To our knowledge, this is the first comprehensive review that summarized the dynamic nature of SARS-CoV-2 transmission, SARS-CoV-2 variants (a variant of concern and variant of interest), antiviral drugs and vaccines utilized against SARS-CoV-2 at a glance. Hopefully, this review will enable the researcher to gain knowledge on SARS-CoV-2 variants and vaccines, which will also pave the way to identify efficient novel vaccines against forthcoming SARS-CoV-2 strains.

4.
Heliyon ; 9(2): e13103, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2282898

ABSTRACT

Despite a growing amount of data around the kinetics and durability of the antibody response induced by vaccination and previous infection, there is little understanding of whether or not a given quantitative level of antibodies correlates to protection against SARS-CoV-2 infection or reinfection. In this study, we examine SARS-CoV-2 anti-spike receptor binding domain (RBD) antibody titers and subsequent SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) tests in a large cohort of US-based patients. We analyzed antibody test results in a cohort of 22,204 individuals, 6.8% (n = 1,509) of whom eventually tested positive for SARS-CoV-2 RNA, suggesting infection or reinfection. Kaplan-Meier curves were plotted to understand the effect of various levels of anti-spike RBD antibody titers (classified into discrete ranges) on subsequent RT-PCR positivity rates. Statistical analyses included fitting a Cox proportional hazards model to estimate the age-, sex- and exposure-adjusted hazard ratios for S antibody titer, using zip-code positivity rates by week as a proxy for COVID-19 exposure. It was found that the best models of the temporally associated infection risk were those based on log antibody titer level (HR = 0.836 (p < 0.05)). When titers were binned, the hazard ratio associated with antibody titer >250 Binding Antibody Units (BAU) was 0.27 (p < 0.05, 95% CI [0.18, 0.41]), while the hazard ratio associated with previous infection was 0.20 (p < 0.05, 95% CI [0.10, 0.39]). Fisher exact odds ratio (OR) for Ab titers <250 BAU showed OR = 2.84 (p < 0.05; 95% CI: [2.30, 3.53]) for predicting the outcome of a subsequent PCR test. Antibody titer levels correlate with protection against subsequent SARS-CoV-2 infection or reinfection when examining a cohort of real-world patients who had the spike RBD antibody assay performed.

5.
J Allergy Clin Immunol Glob ; 2(2): 100083, 2023 May.
Article in English | MEDLINE | ID: covidwho-2259005

ABSTRACT

Background: The pandemic unleashed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 500 million people worldwide and caused more than 6 million deaths. Cellular and humoral immunity induced by infection or immunization are key factors in controlling the viral burden and avoiding the recurrence of coronavirus disease. The duration and effectiveness of immunity after infection is relevant to pandemic policy interventions, including the timing of vaccine boosters. Objectives: We sought to evaluate longitudinal binding and functional antibodies against SARS-CoV-2 receptor-binding domain in police officers and health care workers with a history of coronavirus disease 2019 and compare with SARS-CoV-2-naive individuals after vaccination with adenovirus-based ChAdOx1 nCoV-19 (AstraZeneca-Fiocruz) or the inactivated CoronaVac vaccine (Sinovac-Butantan Institute). Methods: A total of 208 participants were vaccinated. Of these, 126 (60.57%) received the ChAdOx1 nCoV-19 vaccine and 82 (39.42%) received the CoronaVac vaccine. Prevaccination and postvaccination blood was collected, and the amount of anti-SARS-CoV-2 IgG and the neutralizing ability of the antibodies to block the interaction between angiotensin-converting enzyme 2 and receptor-binding domain were determined. Results: Subjects with preexisting SARS-CoV-2 immunity and who received a single dose of ChAdOx1 nCoV-19 or CoronaVac have similar or superior antibody levels when compared with levels in seronegative individuals even after 2 doses of the vaccine. Neutralizing antibody titers of seropositive individuals were higher with a single dose of either ChAdOx1 nCoV-19 or CoronaVac compared with those of seronegative individuals. After 2 doses, both groups reached a plateau response. Conclusions: Our data reinforce the importance of vaccine boosters to increase specific binding and neutralizing SARS-CoV-2 antibodies.

6.
Comput Struct Biotechnol J ; 21: 1966-1977, 2023.
Article in English | MEDLINE | ID: covidwho-2244216

ABSTRACT

The SARS-CoV-2 Omicron variant containing 15 mutations, including the unique Q493R, in the spike protein receptor binding domain (S1-RBD) is highly infectious. While comparison with previously reported mutations provide some insights, the mechanism underlying the increased infections and the impact of the reversal of the unique Q493R mutation seen in BA.4, BA.5, BA.2.75, BQ.1 and XBB lineages is not yet completely understood. Here, using structural modelling and molecular dynamics (MD) simulations, we show that the Omicron mutations increases the affinity of S1-RBD for ACE2, and a reversal of the unique Q493R mutation further increases the ACE2-S1-RBD affinity. Specifically, we performed all atom, explicit solvent MD simulations using a modelled structure of the Omicron S1-RBD-ACE2 and compared the trajectories with the WT complex revealing a substantial reduction in the Cα-atom fluctuation in the Omicron S1-RBD and increased hydrogen bond and other interactions. Residue level analysis revealed an alteration in the interaction between several residues including a switch in the interaction of ACE2 D38 from S1-RBD Y449 in the WT complex to the mutated R residue (Q493R) in Omicron complex. Importantly, simulations with Revertant (Omicron without the Q493R mutation) complex revealed further enhancement of the interaction between S1-RBD and ACE2. Thus, results presented here not only provide insights into the increased infectious potential of the Omicron variant but also a mechanistic basis for the reversal of the Q493R mutation seen in some Omicron lineages and will aid in understanding the impact of mutations in SARS-CoV-2 evolution.

7.
J Funct Foods ; 101: 105407, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165538

ABSTRACT

Lophatherum gracile (L. gracile) has long been used as a functional food and herbal medicine. Previous studies have demonstrated that extracts of L. gracile attenuate inflammatory response and inhibit SARS-CoV-2 replication; however, the underlying active constituents have yet to be identified. This study investigated the bioactive components of L. gracile. Flavone C-glycosides of L. gracile were found to dominate both anti-inflammatory and antiviral effects. A simple chromatography-based method was developed to obtain flavone C-glycoside-enriched extract (FlavoLG) from L. gracile. FlavoLG and its major flavone C-glycoside isoorientin were shown to restrict respiratory bursts and the formation of neutrophil extracellular traps in activated human neutrophils. FlavoLG and isoorientin were also shown to inhibit SARS-CoV-2 pseudovirus infection by interfering with the binding of the SARS-CoV-2 spike on ACE2. These results provide scientific evidence indicating the efficacy of L. gracile as a potential supplement for treating neutrophil-associated COVID-19.

8.
Heliyon ; 9(1): e12704, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165332

ABSTRACT

Critically ill patients infected with SARS-CoV-2 display adaptive immunity, but it is unknown if they develop cross-reactivity to variants of concern (VOCs). We profiled cross-immunity against SARS-CoV-2 VOCs in naturally infected, non-vaccinated, critically ill COVID-19 patients. Wave-1 patients (wild-type infection) were similar in demographics to Wave-3 patients (wild-type/alpha infection), but Wave-3 patients had higher illness severity. Wave-1 patients developed increasing neutralizing antibodies to all variants, as did patients during Wave-3. Wave-3 patients, when compared to Wave-1, developed more robust antibody responses, particularly for wild-type, alpha, beta and delta variants. Within Wave-3, neutralizing antibodies were significantly less to beta and gamma VOCs, as compared to wild-type, alpha and delta. Patients previously diagnosed with cancer or chronic obstructive pulmonary disease had significantly fewer neutralizing antibodies. Naturally infected ICU patients developed adaptive responses to all VOCs, with greater responses in those patients more likely to be infected with the alpha variant, versus wild-type.

9.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2122710

ABSTRACT

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

10.
Biomed Eng Adv ; 4: 100054, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031157

ABSTRACT

With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.

11.
Ann Med Surg (Lond) ; 78: 103951, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1944151
12.
Vaccine X ; 11: 100173, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1945873

ABSTRACT

Background: There are a few reports on antibody responses after a two-dose BNT162b2 vaccination in non-epidemic areas. We evaluated this phenomenon. Methods: A total of 344 healthcare workers were vaccinated, and the serum anti-receptor-binding domain (RBD) antibody concentrations before and after two weeks following the two-dose BNT162b2 vaccination were measured using electro chemiluminescence immunoassay system. Results: Before vaccination, the antibody titers of all participants were less than 0.6 U/mL. After two doses of the BNT162b2 vaccine injection in 342 participants (2 excluded), a high seroconversion rate (99.7%) was observed. The average (±standard deviation) serum anti-RBD antibody titers were 2324 ± 1739 U/mL. Antibody levels in females and males were 2443 ± 1833 U/mL and 1908 ± 1287 U/mL, respectively (p = 0.037). Conclusion: In a non-epidemic area, two BNT162b2 doses induced a satisfactory antibody response, and the antibody concentrations in females were higher than in males.

13.
Gene Rep ; 27: 101636, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1885776

ABSTRACT

Since the beginning of the of SARS-CoV-2 (Covid-19) pandemic, variants of concern (VOC) have emerged taxing health systems worldwide. In October 2020, a new variant of SARS-CoV-2 (B.1.617+/Delta variant) emerged in India, triggering a deadly wave of Covid-19. Epidemiological data strongly suggests that B.1.617+ is more transmissible and previous reports have revealed that B.1.617+ has numerous mutations compared to wild type (WT), including several changes in the spike protein (SP). The main goal of this study was to use In Silico (computer simulation) techniques to examine mutations in the SP, specifically L452R and E484Q (part of the receptor binding domain (RBD) for human angiotensin-converting enzyme 2 (hACE2)) and P681R (upstream of the Furin cleavage motif), for effects in modulating the transmissibility of the B.1.617+ variant. Using computational models, the binding free energy (BFE) and H-bond lengths were calculated for SP-hACE2 and SP-Furin complexes. Comparison of the SP-hACE2 complex in the WT and B.1.617+ revealed both complexes have identical receptor-binding modes but the total BFE of B.1.617+ binding was more favorable for complex formation than WT, suggesting L452R and E484Q have a moderate impact on binding affinity. In contrast, the SP-Furin complex of B.1.617+ substantially lowered the BFE and revealed changes in molecular interactions compared to the WT complex, implying stronger complex formation between the variant and Furin. This study provides an insight into mutations that modulate transmissibility of the B.1.617+ variant, specifically the P681R mutation which appears to enhance transmissibility of the B.1.617+ variant by rendering it more receptive to Furin.

14.
Comput Struct Biotechnol J ; 20: 2558-2563, 2022.
Article in English | MEDLINE | ID: covidwho-1850922

ABSTRACT

The SARS-CoV-2 Variants of Concern tracking via Whole Genome Sequencing represents a pillar of public health measures for the containment of the pandemic. The ability to track down the lineage distribution on a local and global scale leads to a better understanding of immune escape and to adopting interventions to contain novel outbreaks. This scenario poses a challenge for NGS laboratories worldwide that are pressed to have both a faster turnaround time and a high-throughput processing of swabs for sequencing and analysis. In this study, we present an optimization of the Illumina COVID-seq protocol carried out on thousands of SARS-CoV-2 samples at the wet and dry level. We discuss the unique challenges related to processing hundreds of swabs per week such as the tradeoff between ultra-high sensitivity and negative contamination levels, cost efficiency and bioinformatics quality metrics.

15.
Gene Rep ; 27: 101619, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1819494

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a remarkably contagious and pathogenic viral infection arising from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in Wuhan, China. For the time being, COVID-19 is not treated with a specific therapy. The Food and Drug Administration (FDA) has approved Remdesivir as the first drug to treat COVID-19. However, many other therapeutic approaches are being investigated as possible treatments for COVID-19. As part of this review, we discussed the development of various drugs, their mechanism of action, and how they might be applied to different cases of COVID-19 patients. Furthermore, this review highlights an update in the emergence of new prophylactic or therapeutic vaccines against COVID-19. In addition to FDA or The World Health Organization (WHO) approved vaccines, we intended to incorporate the latest published data from phase III trials about different COVID-19 vaccines and provide clinical data released on the networks or peer-review journals.

16.
J King Saud Univ Sci ; 34(4): 102049, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1804570

ABSTRACT

Objective: The acute cases of pneumonia (COVID-19) were first reported from China in December 2019, and the pathogen was identified as SARS-CoV-2. Currently, many vaccines have been developed against this virus by using multiple genes, applying different platforms, and used for the vaccinations of the human population. Spike protein genes play an important role in host cell attachment and viral entry and have been extensively used for the development of vaccine and antiviral therapeutics. Short interfering RNA is also known as silencing RNA and contribute a significant role to regulate the expression of a specific gene. By using this technology, virus inhibition has been demonstrated against many viral diseases. Methods: In this work, we have reported the Insilico prediction, designing, and experimental validation of siRNAs antiviral potency against SARS-CoV-2-S-RBD. The siDirect 2.0 was selected for siRNAs prediction, and secondary structure was predicted by RNAfold while the HNADOCK was used for molecular docking analysis and specific binding of siRNAs to the selected target. We have used and evaluated four siRNAs for cellular toxicity and determination of antiviral efficiency based on the Ct value of q-real-time PCR in Vero E6 cells. Results: Based on the experimental evaluation and analysis of results from generated data, we observed that there is no cytotoxicity for any tested siRNAs in Vero E6 cells. Total four siRNA were filtered out from twenty-one siRNAs following the strict selection and scoring criteria. The better antiviral efficiency was observed in 3rd siRNAs based on the Ct value of q-real-time PCR. The results that emerged from this study encouraged us to validate the efficiency of these siRNAs in multiple cells by using alone and in a combination of two or more siRNAs to inhibit the SARS-CoV-2 proliferation. Conclusion: The Insilico prediction, molecular docking analysis provided the selection of better siRNAs. Based on the experimental evaluation only 3rd siRNA was found to be more effective than others and showed better antiviral efficiency. These siRNAs should also be evaluated in other cell lines either separately or in combination against SARS-CoV-2 to determine their antiviral efficiency.

17.
JHEP Rep ; 4(7): 100496, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1804547

ABSTRACT

Background & Aims: Cirrhosis entails elevated risk of COVID-19-associated mortality. This study determined T cell-mediated and antibody reactivity against the spike 1 (S1) protein of SARS-CoV-2 among 48 patients with cirrhosis and 39 healthy controls after mRNA COVID-19 vaccination. Methods: SARS-CoV-2-specific T-cell reactivity was measured by induced level of T cell-derived interferon-γ (IFN-γ) in blood cells stimulated ex vivo with multimeric peptides spanning the N-terminal portion of S1. S1-induced IFN-γ was quantified before and after the 1st and 2nd vaccination (BNT162b2, Pfizer-BioNTech or mRNA-1273, Moderna) alongside serum IgG against the receptor-binding domain (RBD) within S1 (anti-RBD-S1 IgG). Results: T-cell reactivity against S1 was reduced in patients with cirrhosis after the 1st (p <0.001 vs. controls) and 2nd (p <0.001) vaccination. Sixty-eight percent of patients lacked detectable S1-specific T-cell reactivity after the 1st vaccination vs. 19% in controls (odds ratio 0.11, 95% CI 0.03-0.48, p = 0.003) and 36% remained devoid of reactivity after the 2nd vaccination vs. 6% in controls (odds ratio 0.12, 95% CI 0.03-0.59, p = 0.009). T-cell reactivity in cirrhosis remained significantly impaired after correction for potential confounders in multivariable analysis. Advanced cirrhosis (Child-Pugh class B) was associated with absent or lower T-cell responses (p <0.05 vs. Child-Pugh class A). The deficiency of T-cell reactivity was paralleled by lower levels of anti-RBD-S1 IgG after the 1st (p <0.001 vs. controls) and 2nd (p <0.05) vaccination. Conclusions: Patients with cirrhosis show deficient T-cell reactivity against SARS-CoV-2 antigens along with diminished levels of anti-RBD-S1 IgG after dual COVID-19 vaccination, highlighting the need for vigilance and additional preventative measures. Clinical trial registration: EudraCT 2021-000349-42. Lay summary: T cells are a pivotal component in the defence against viruses. We show that patients with cirrhosis have impaired SARS-CoV-2-specific T-cell responses and lower antibody levels after mRNA vaccination against COVID-19 compared with healthy controls. Patients with more advanced liver disease exhibited particularly inferior vaccine responses. These results call for additional preventative measures in these patients.

18.
Phytomed Plus ; 2(3): 100280, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1796221

ABSTRACT

Background: The presence of diabetes mellitus (DM) among COVID-19 patients is associated with increased hospitalization, morbidity, and mortality. Evidence has shown that hyperglycemia potentiates SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection and plays a central role in severe COVID-19 and diabetes comorbidity. In this review, we explore the therapeutic potentials of herbal medications and natural products in the management of COVID-19 and DM comorbidity and the challenges associated with the preexisting or concurrent use of these substances. Methods: Research papers that were published from January 2016 to December 2021 were retrieved from PubMed, ScienceDirect, and Google Scholar databases. Papers reporting clinical evidence of antidiabetic activities and any available evidence of the anti-COVID-19 potential of ten selected natural products were retrieved and analyzed for discussion in this review. Results: A total of 548 papers (73 clinical trials on the antidiabetic activities of the selected natural products and 475 research and review articles on their anti-COVID-19 potential) were retrieved from the literature search for further analysis. A total of 517 articles (reviews and less relevant research papers) were excluded. A cumulative sum of thirty-one (31) research papers (20 clinical trials and 10 others) met the criteria and have been discussed in this review. Conclusion: The findings of this review suggest that phenolic compounds are the most promising phytochemicals in the management of COVID-19 and DM comorbidity. Curcumin and propolis have shown substantial evidence against COVID-19 and DM in humans and are thus, considered the best potential therapeutic options.

19.
Comput Struct Biotechnol J ; 20: 824-837, 2022.
Article in English | MEDLINE | ID: covidwho-1778073

ABSTRACT

Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has challenged public health around the world. Currently, there is an urgent need to explore antiviral therapeutic targets and effective clinical drugs. In this study, we systematically summarized two main therapeutic strategies against COVID-19, namely drugs targeting the SARS-CoV-2 life cycle and SARS-CoV-2-induced inflammation in host cells. The development of above two strategies is implemented by repurposing drugs and exploring potential targets. A comprehensive summary of promising drugs, especially cytokine inhibitors, and traditional Chinese medicine (TCM), provides recommendations for clinicians as evidence-based medicine in the actual clinical COVID-19 treatment. Considering the emerging SARS-CoV-2 variants greatly impact the effectiveness of drugs and vaccines, we reviewed the appearance and details of SARS-CoV-2 variants for further perspectives in drug design, which brings updating clues to develop therapeutical agents against the variants. Based on this, the development of broadly antiviral drugs, combined with immunomodulatory, or holistic therapy in the host, is prior to being considered for therapeutic interventions on mutant strains of SARS-CoV-2. Therefore, it is highly acclaimed the requirements of the concerted efforts from multi-disciplinary basic studies and clinical trials, which improves the accurate treatment of COVID-19 and optimizes the contingency measures to emerging SARS-CoV-2 variants.

20.
Gene Rep ; 27: 101608, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1773330

ABSTRACT

Rapid emergence of covid-19 variants by continuous mutation made the world experience continuous waves of infections and as a result, a huge number of death-toll recorded so far. It is, therefore, very important to investigate the diversity and nature of the mutations in the SARS-CoV-2 genomes. In this study, the common mutations occurred in the whole genome sequences of SARS-CoV-2 variants of Bangladesh in a certain timeline were analyzed to better understand its status. Hence, a total of 78 complete genome sequences available in the NCBI database were obtained, aligned and further analyzed. Scattered Single Nucleotide Polymorphisms (SNPs) were identified throughout the genome of variants and common SNPs such as: 241:C>T in the 5'UTR of Open Reading Frame 1A (ORF1A), 3037: C>T in Non-structural Protein 3 (NSP3), 14,408: C>T in ORF6 and 23,402: A>G, 23,403: A>G in Spike Protein (S) were observed, but all of them were synonymous mutations. About 97% of the studied genomes showed a block of tri-nucleotide alteration (GGG>AAC), the most common non-synonymous mutation in the 28,881-28,883 location of the genome. This block results in two amino acid changes (203-204: RG>KR) in the SR rich motif of the nucleocapsid (N) protein of SARS-CoV-2, introducing a lysine in between serine and arginine. The N protein structure of the mutant was predicted through protein modeling. However, no observable difference was found between the mutant and the reference (Wuhan) protein. Further, the protein stability changes upon mutations were analyzed using the I-Mutant2.0 tool. The alteration of the arginine to lysine at the amino acid position 203, showed reduction of entropy, suggesting a possible impact on the overall stability of the N protein. The estimation of the non-synonymous to synonymous substitution ratio (dN/dS) were analyzed for the common mutations and the results showed that the overall mean distance among the N-protein variants were statistically significant, supporting the non-synonymous nature of the mutations. The phylogenetic analysis of the selected 78 genomes, compared with the most common genomic variants of this virus across the globe showed a distinct cluster for the analyzed Bangladeshi sequences. Further studies are warranted for conferring any plausible association of these mutations with the clinical manifestation.

SELECTION OF CITATIONS
SEARCH DETAIL